Spatio-Temporal Assessment of Mangrove Habitat Quality Changes and Key Threats (Case Study: Khorkhorān, Hormozgan Province)

Document Type : Research Article - Case Study

Authors

1 Associate Professor, Hormoz Studies and Research Center, University of Hormozgan, Bandar-Abbas, Iran.

2 Assistant Professor, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.

3 Assistant Professor, Hormoz Studies and Research Center, University of Hormozgan, Bandar-Abbas, Iran.

10.22124/gscaj.2025.30665.1359

Abstract

Mangrove forests, as vital coastal ecosystems, play a key role in biodiversity conservation, climate change mitigation, and supporting the livelihoods of local communities. This study investigated concerning trends in habitat quality changes and identified key influencing factors, providing insights into the spatial displacement of high- and low-quality habitat clusters of Avicennia marina (mangrove) within the protected area of Khorkhorān, Hormozgan Province. To assess habitat quality, the study utilized the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. Spatial clustering patterns were analyzed using Global Moran’s I index, and changes in the extent of hot and cold spots (in hectares) as well as boundary shifts of these clusters between 2019 and 2024 were quantified. Additionally, Pearson correlation, t-test, and Wilcoxon test were employed to evaluate the influence of environmental variables on mangrove habitat quality and its temporal variation. All environmental data were sourced from the Google Earth Engine (GEE) platform. The results revealed a statistically significant clustering pattern in the spatial distribution of habitat quality. A notable decrease in ecological integrity and an increase in random tree dispersion were observed, with patch sizes expanding from 16.93 hectares in 2019 to 31.55 hectares in 2024. Over the six-year period, the boundary of dense mangrove zones retreated an average of 100 meters toward the central areas of the habitat. Furthermore, the area of highly dense mangrove zones decreased by 134.6 hectares, while cold spots (areas with low habitat quality) expanded by 326.24 hectares. Among the environmental drivers, freshwater scarcity in the soil had the most significant impact on habitat quality, with correlation coefficients of 0.6 in 2019 and 0.8 in 2024. Although the results of the t-test and Wilcoxon test did not indicate statistically significant overall changes in environmental threats, several critical variables—particularly freshwater scarcity and aerosol concentration—exhibited alarming trends that call for urgent management interventions.

Highlights

- The InVEST model and Moran index were used to assess the habitat quality of the Khorkhorān mangrove forest between 2019 and 2024.

- The border of dense mangrove forests has retreated by about 100 meters between 2019 and 2024.

- The poor quality of the mangrove habitat has increased by 326 hectares, and the lack of fresh water in the soil has been the main factor in the decline in habitat quality.

Keywords

Main Subjects


Alemu, J. B., Richards, D. R., Gaw, L. Y. F., Masoudi, M., Nathan, Y., & Friess, D. A. (2021). Identifying spatial patterns and interactions among multiple ecosystem services in an urban mangrove landscape. Ecological Indicators121, 107042. https://doi.org/10.1016/j.ecolind.2020.107042
Al-Huqail, A. A., Islam, Z., & Al-Harbi, H. F. (2025). Ecological Stress Modeling to Conserve Mangrove Ecosystem Along the Jazan Coast of Saudi Arabia. Land14(1), 70. https://doi.org/10.3390/land14010070
Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Environmental conservation29(3), pp. 331-349. https://doi.org/10.1017/S0376892902000231
Alongi, D. M. (2015). The impact of climate change on mangrove forests. Current Climate Change Reports1, pp. 30-39.‏ https://doi.org/10.1007/s40641-015-0002-x
Almahasheer, H., Serrano, O., Duarte, C. M., Arias-Ortiz, A., Masque, P., & Irigoien, X. (2017). Low carbon sink capacity of Red Sea mangroves. Scientific reports7(1), 9700.‏ https://doi.org/10.1038/s41598-017-10424-9
Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis27(2), pp. 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Aznarez, C., Svenning, J. C., Taveira, G., Baró, F., & Pascual, U. 2022. Wildness and habitat quality drive spatial patterns of urban biodiversity. Landsc. Urban Plan.228, 104570.‏ https://doi.org/10.1016/j.landurbplan.2022.104570
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological monographs81(2), pp. 169-193.  https://doi.org/10.1890/10-1510.1
Berta Aneseyee, A., Noszczyk, T., Soromessa, T., & Elias, E. 2020. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens.12(7), 1103.‏ https://doi.org/10.3390/rs12071103
Caro, C., Marques, J. C., Cunha, P. P., & Teixeira, Z. 2020. Ecosystem services as a resilience descriptor in habitat risk assessment using the InVEST model. Ecol. Indic.115, 106426. https://doi.org/10.1016/j.ecolind.2020.106426
Chen, Y., Qiao, F., & Jiang, L. (2016). Effects of land use pattern change on regional scale habitat quality based on InVEST modeld—a case study in Beijing. Acta Scientiarum Naturalium Universitatis Pekinensis, 52, pp. 553–562.
Cinco-Castro, S., & Herrera-Silveira, J. (2020). Vulnerability of mangrove ecosystems to climate change effects: The case of the Yucatan Peninsula. Ocean & coastal management192, 105196. https://doi.org/10.1016/j.ocecoaman.2020.105196
Dashtbozorgi, F., Hedayatiaghmashhadi, A., Dashtbozorgi, A., Ruiz–Agudelo, C. A., Fürst, C., Cirella, G. T., & Naderi, M. (2023). Ecosystem services valuation using InVEST modeling: Case from southern Iranian mangrove forests. Regional Studies in Marine Science60, 102813. https://doi.org/10.1016/j.rsma.2023.102813
Duke, N. C., Kovacs, J. M., Griffiths, A. D., Preece, L., Hill, D. J., Van Oosterzee, P., ... & Burrows, D. (2017). Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Marine and Freshwater Research68(10), pp. 1816-1829.‏ https://doi.org/10.1071/MF16322
Ghayoumi, R., Ebrahimi, E., & Mousavi, S. M. (2022). Dynamics of mangrove forest distribution changes in Iran. Journal of Water and Climate Change13(6), pp. 2479-2489.‏ https://doi.org/10.2166/wcc.2022.069
Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical analysis24(3), pp. 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic botany89(2), pp. 237-250. https://doi.org/10.1016/j.aquabot.2007.12.009
Giri, C., Long, J., Abbas, S., Murali, R. M., Qamer, F. M., Pengra, B., & Thau, D. (2015). Distribution and dynamics of mangrove forests of South Asia. Journal of environmental management148, pp. 101-111.‏ https://doi.org/10.1016/j.jenvman.2014.01.020
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., ... & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global ecology and biogeography20(1), pp. 154-159.‏  https://doi.org/10.1111/j.1466-8238.2010.00584.x
Gu, L., Yan, J., Li, Y., & Gong, Z. (2023). Spatial–temporal evolution and correlation analysis between habitat quality and landscape patterns based on land use change in Shaanxi Province, China. Ecology and Evolution13(11), e10657. https://doi.org/10.1002/ece3.10657.
Hagger, V., Worthington, T. A., Lovelock, C. E., Adame, M. F., Amano, T., Brown, B. M., ... & Saunders, M. I. (2022). Drivers of global mangrove loss and gain in social-ecological systems. Nature Communications13(1), 6373. https://doi.org/10.1038/s41467-022-33962-x
Hou, Y., & Wu, J. 2024. Land-use and habitat quality prediction in the Fen River Basin based on PLUS and InVEST models. Front. environ. sci.12, 1386549.‏ https://doi.org/10.3389/fenvs.2024.1386549
Kazemi, M., & Jafarpoor, A. (2025). Multi Temporal Land use/Land cover using Spectral indices, Sentinel-2 Imagery and Migrated Training Samples in Google Earth Engine. Iranian Journal of Watershed Management Science and Engineering18(67), pp. 1-15 ‏. [In Persian]
Mondal, I., Naskar, P. K., Alsulamy, S., Jose, F., Hossain, S. A., Mohammad, L., ... & Juliev, M. (2024). Habitat quality and degradation change analysis for the Sundarbans mangrove forest using invest habitat quality model and machine learning. Environment, Development and Sustainability, pp.1-26. https://doi.org/10.1007/s10668-024-05257-2
Mutanga, O., & Kumar, L. (2019). Google earth engine applications. Remote sensing11(5), 591.‏
Poladatan, L., Berenji, M., & Moghadamnia, Nazanin, (2011), The impact of oil pollutants on mangrove trees in the Nayband region, Regional Conference on Forests and Environment as a Guarantee of Sustainable Development. [In Persian]
Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C., ... & Yong, J. W. H. (2010). The loss of species: mangrove extinction risk and geographic areas of global concern. PloS one5(4), e10095. https://doi.org/10.1371/journal.pone.0010095
Sabzghabaei G R, Dashti S S, BazmaraBaleshti M, Jafarzadeh K. Change Detection of Khoor_e_khooran Harra Protected Area Using Remote Sensing and GIS. 3 2015; 7 (2) :1-12. [In Persian]
Saputra, W., Giyarsih, S. R., & Muhidin, S. (2023). Spatial analysis of slum areas on the riverbanks of Palembang City using the Anselin Local Moran’s I analysis. GeoJournal88(6), pp. 6523-6538. https://doi.org/10.1007/s10708-023-10983-7
Sasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land‐use and land‐cover change on mangrove blue carbon: A systematic review. Global change biology25(12), pp. 4291-4302.‏  https://doi.org/10.1111/gcb.14774
Sanaullah, S., Yang, D., Zhong, R., Zhao, L., Shafi, M., & Akbar, A. J. (2025). Mangrove dynamics in Pakistan: A long-term study of coastal ecosystem shifts over more than three decades. Ecological Indicators174, 113452.‏ https://doi.org/10.1016/j.ecolind.2025.113452
Savari, M., Damaneh, H. E., & Damaneh, H. E. (2022). Factors involved in the degradation of mangrove forests in Iran: A mixed study for the management of this ecosystem. Journal for Nature Conservation66, 126153. https://doi.org/10.1016/j.jnc.2022.126153
Solek, C.W., Stein, E.D. & Sutula, M. (2011). Demonstration of an integrated watershed assessment using a three-tiered assessment framework. Wetlands Ecol Manage 19, pp. 459–474. https://doi.org/10.1007/s11273-011-9230-6
Sumarmi, S., Purwanto, P., & Bachri, S. (2021). Spatial analysis of mangrove forest management to reduce air temperature and CO2 emissions. Sustainability13(14), 8090.  https://doi.org/10.3390/su13148090
Qin, W., Ismail, M. H., Ramli, M. F., Deng, J., & Wu, N. (2025). Evaluation and Prediction of Ecological Quality Based on Remote Sensing Environmental Index and Cellular Automata-Markov. Sustainability17(8), 3640.‏ https:// doi.org/10.3390/su17083640
Tinh, P. H., MacKenzie, R. A., Hung, T. D., Hanh, N. T. H., Hanh, N. H., Manh, D. Q., ... & Tuan, M. S. (2022). Distribution and drivers of Vietnam mangrove deforestation from 1995 to 2019. Mitigation and Adaptation Strategies for Global Change27(4), 29. https://doi.org/10.1007/s11027-022-10005-w
Tun, A. W., Tong, X., Aye, W. N., & Li, J. (2025). Stand Structures and Carbon Storage Potential of Mangroves in Chaungkaphee Protected Public Forest, Tanintharyi Coastal Region, Myanmar. Forests16(3), 554. https://doi.org/10.3390/f16030554
Wang, B., & Cheng, W. 2022. Effects of land use/cover on regional habitat quality under different geomorphic types based on InVEST model. Remote Sens.14(5), 1279.‏ https://doi.org/10.3390/rs14051279
Wang, R., Zhuang, H., Cheng, M., Yang, H., Wang, W., Ci, H., & Yan, Z. (2025). Spatial and Temporal Variations of Habitat Quality and Influencing Factors in Urban Agglomerations on the North Slope of Tianshan Mountains, China. Land14(3), 539. https://doi.org/10.3390/land14030539
Wiarta, R., Firdaus Silamon, R., ISHAG ARBAB, M. O. H. A. M. M. E. D., Badshah, M. T., Hayat, U., & Meng, J. (2025). Assessing of Driving Factors and Change Detection of Mangrove Forest in Kubu Raya District, Indonesia. Frontiers in Forests and Global Change8, 1511361. https://doi: 10.3389/ffgc.2025.1511361
Xu, M., Wang, Z., Liang, Y., Mo, Z., & Zhang, Q. (2024). Analysis of spatiotemporal evolution characteristics and recovery patterns of mangrove forests in China since 1978. Ecological Indicators169, 112882. https://doi.org/10.1016/j.ecolind.2024.112882
Yuan, Y., Cave, M., & Zhang, C. (2018). Using Local Moran's I to identify contamination hotspots of rare earth elements in urban soils of London. Applied geochemistry88, 167-178.‏